miércoles, 6 de julio de 2016

MEDICAMENTO CON LIPIDOS

MEDICAMENTOS QUE CONTIENEN LIPIDOS

Estas disminuyen los niveles de colesterol total, colesterol LDL, y triglicéridos. Éstos también podrían reducir los riesgos de enfermedades cardiacas. Los medicamentos por lo general se toman diariamente con la cena o en la noche. Su médico medirá sus niveles de colesterol en la sangre y su función hepática regularmente mientras usted está tomando estos medicamentos.
Incluso si actualmente no tiene enfermedad conocida de las arterias coronarias (CHD), usted se podría beneficiar de tomar medicamentos de estatinas (reductores de colesterol), particularmente si sus niveles de colesterol son elevados. En una revisión reciente de siete estudios clínicos, sujetos sin CHD conocida que tomaron estatinas durante al menos un año tuvieron una reducción considerable.


Nombres comunes incluyen:

  • Fluvastatina (Lescol)
  • Atorvastatina (Lipitor) (figura 1)
  • Lovastatina (Mevacor)(figura 2)
  • Pravastatina (Pravachol)
  • Simvastatina (Zocor)
  • Rosuvastatina (Crestor)
  • Vitamina B6
ESTRUCTURA DE LA FLUVASTATINA

FLUVASTATINA/ LESCOL





          







    








ROSUVASTATINA



ADN

ADN






EL proceso de replicación de ADN es el mecanismo que permite al ADN duplicarse (es decir, sintetizar una copia idéntica). De esta manera de una molécula de ADN única, se obtienen dos o más "réplicas" de la primera. Esta duplicación del material genético se produce de acuerdo con un mecanismo semiconservador, lo que indica que los dos polímeros complementarias del ADN original, al separarse, sirven de molde cada una para la síntesis de una nueva cadena complementaria de la cadena molde, de forma que cada nueva doble hélicecontiene una de las cadenas del ADN original. Gracias a la complementación entre las bases que forman la secuencia de cada una de las cadenas, el ADN tiene la importante propiedad de reproducirse idénticamente, lo que permite que la información genética se transmita de una célula madre a las células hijas y es la base de la herencia del material genético.
La molécula de ADN se abre como una cremallera por ruptura de los puentes de hidrógeno entre las bases complementarias puntos determinados: los orígenes de replicación. Las proteínas iniciadoras reconocen secuencias de nucleótidos específicas en esos puntos y facilitan la fijación de otras proteínas que permitirán la separación de las dos hebras de ADN formándose una horquilla de replicación. Un gran número de enzimas y proteínas intervienen en el mecanismo molecular de la replicación, formando el llamado complejo de replicación o replisomaEstas proteínas y enzimas son homólogas en eucariotas y arqueas, pero difieren en bacterias.




TRANSCRIPCION DEL ADR A ARN



La transcripción del ADN es el primer proceso de la expresión génica, mediante el cual se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteína utilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.
ETAPAS:

  • Preiniciación
  • Iniciación
  • Disgregación del promotor
  • Elongación
  • Terminación



    TRADUCCION DE ADN A PROTEINAS




    La traducción es el segundo proceso de la síntesis proteica (parte del proceso general de la expresión génica). La traducción ocurre tanto en el citoplasma, donde se encuentran los ribosomas, como también en el retículo endoplasmático rugoso (RER). Los ribosomas están formados por una subunidad pequeña y una grande que rodean al ARN. En la traducción, el ARN mensajero se decodifica para producir un polipéptido específico de acuerdo con las reglas especificadas por el código genético. Es el proceso que convierte una secuencia de ARN mensajero en una cadena de aminoácidos para formar una proteína. Es necesario que la traducción venga precedida de un proceso detranscripción. El proceso de traducción tiene tres fases: iniciación, elongación y terminación (entre todos describen el crecimiento de la cadena de aminoácidos, o polipéptido, que es el producto de la traducción).



    miércoles, 29 de junio de 2016

    NUCLEOTIDOS Y ACIDOS NUCLEICOS

    ACIDOS NUCLEICOS Y NUCLEOTIDOS

    Entre las biomoléculas más importantes, por su papel en el almacenamiento y transmisión de la información genética, se encuentran los ácidos nucleicos. Los ácidos nucleicos son macromoléculas formadas por la unión de unidades básicas denominadas nucleótidos. Dicha unión se realiza mediante un tipo de enlace conocido como puente fosfodiéster. Se puede considerar que los nucleótidos son los sillares estructurales de los ácidos nucleicos, del mismo modo que los aminoácidos lo son de las proteínas o los monosacáridos de los polisacáridos. Además de desempeñar este importante papel, los nucleótidos como tales tienen otras funciones biológicas de naturaleza energética o coenzimática.

     CONSTITUYENTES QUÍMICOS DE LOS NUCLEÓTIDOS.



    unidades monoméricas constitutivas: los nucleótidos. Los sillares estructurales de otras macromoléculas, como los aminoácidos o los monosacáridos, no son susceptibles de descomponerse a su vez en unidades más simples; sin embargo los nucleótidos sí pueden sufrir hidrólisis dando lugar a una mezcla de pentosas, ácido fosfórico y bases nitrogenadas. Cada nucleótido está compuesto por una pentosa, una molécula de ácido fosfórico y una base nitrogenada enlazados de un modo característico. En la Figura 9.1 se muestran estos tres componentes de los nucleótidos. Las pentosas que aparecen formando parte de los nucleótidos son la β-D-ribosa y su derivado, el desoxiazúcar 2'-β-D-desoxirribosa, en el que el grupo hidroxilo unido al carbono 2' fue sustituido por un átomo de hidrógeno. Ambas se encuentran en forma de anillos de furanosa (ver Figura 9.1). Las posiciones del anillo de furanosa se numeran convencionalmente añadiendo el signo (') al número de cada átomo de carbono para distinguirlas de las de los anillos de las bases nitrogenadas. El tipo de ácido fosfórico que se encuentra en los nucleótidos es concretamente el ácido ortofosfórico, cuya estructura molecular se muestra en la Figura 9.1. Las bases nitrogenadas (Figura 9.1) son compuestos heterocíclicos que, gracias al sistema de dobles enlaces conjugados que poseen en sus anillos, poseen un acusado carácter aromático, siendo su conformación espacial planar o casi planar. Sus átomos de nitrógeno poseen pares electrónicos no compartidos que tienen tendencia a captar protones, lo que explica su carácter débilmente básico. Los compuestos originarios de los que derivan estas bases nitrogenadas son la purina y la pirimidina. Existen formando parte de los nucleótidos dos derivados de la purina (bases púricas), que son la adenina y la guanina, y tres derivados de la pirimidina (bases pirimídicas), que son la citosina, la timina y el uracilo. Todas ellas se obtienen por adición de diferentes grupos funcionales en distintas posiciones de los anillos de la purina o de la pirimidina (por ejemplo la adenina es la 6-amino-purina, y el uracilo la 2,4-dioxipirimidina). Las características químicas de estos grupos funcionales les permiten participar en la formación de puentes de hidrógeno, lo que resulta crucial para la función biológica de los ácidos nucleicos.

    Las pentosas se unen a las bases nitrogenadas dando lugar a unos compuestos denominados nucleósidos. La unión se realiza mediante un enlace N-glucosídico entre el átomo de carbono carbonílico de la pentosa (carbono 1') y uno de los átomos de nitrógeno de la base nitrogenada, el de la posición 1 si ésta es pirimídica o el de la posición 9 si ésta es púrica. El enlace Nglucosídico es una variante del tipo más habitual de enlace glucosídico (Oglucosídico), que se forma cuando un hemiacetal o hemicetal intramolecular reacciona con una amina, en lugar de hacerlo con un alcohol, liberándose una molécula de agua. Los nucleósidos en estado libre sólo se encuentran en cantidades mínimas en las células, generalmente como 3 productos intermediarios en el metabolismo de los nucleótidos. Existen dos tipos de nucleósidos: los ribonucleósidos, que contienen β-D-ribosa como componente glucídico, y los desoxirribonucleósidos, que contienen β-D-desoxirribosa. En la naturaleza se encuentran ribonucleósidos de adenina, guanina, citosina y uracilo, y desoxirribonucleósidos de adenina, guanina, citosina y timina. En la Figura 9.2 se representan dos nucleósidos de adenina. Los nucleósidos se nombran añadiendo la terminación -osina al nombre de la base nitrogenada si ésta es púrica o bien la terminación -idina si ésta es pirimídica (ver Tabla 9.1), y anteponiendo el prefijo desoxi- en el caso de los desoxirribonucleósidos.

    Los nucleótidos resultan de la unión mediante enlace éster de la pentosa de un nucleósido con una molécula de ácido fosfórico. Esta unión, en la que se libera una molécula de agua, puede producirse en cualquiera de los grupos hidroxilo libres de la pentosa, pero como regla general tiene lugar en el que ocupa la posición 5'; es decir, los nucleótidos son los 5' fosfatos de los correspondientes nucleósidos. La posesión de un grupo fosfato, que a pH 7 se encuentra ionizado, confiere a los nucleótidos un carácter marcadamente ácido. En la Figura 9.3 se muestra la estructura de un nucleótido de manera que se puedan distinguir sus tres constituyentes químicos. Además de los nucleótidos monofosfato que acabamos de describir, que son los sillares estructurales de los ácidos nucleicos, existen en la naturaleza nucleótidos di~ y trifosfato, que resultan de la unión mediante enlace anhidro de 1 ó 2 moléculas de ácido fosfórico adicionales a la que se encuentra unida al carbono 5' de la pentosa (Figura 9.4). 4 Al igual que los nucleósidos, los nucleótidos pueden clasificarse en ribonucleótidos y desoxirribonucleótidos según contengan ribosa o desoxirribosa respectivamente.
    Existen diversas maneras de nombrar los nucleótidos; la de uso más amplio y menor ambigüedad es la que se muestra en la parte derecha de la Tabla 9.1. En ella cada nucleótido se identifica mediante tres letras mayúsculas, la primera de ellas es la inicial de la base nitrogenada, la segunda indica si el nucleótido es Mono~, Di~, o Trifosfato, y la tercera es la inicial del grupo fosfato (en inglés, phosphate); en el caso de los desoxirribonucleótidos se antepone una "d" minúscula a estas tres siglas. Otra forma de nombrarlos consiste en anteponer la palabra ácido y añadir la terminación - ílico al nombre de la base nitrogenada correspondiente; así, por ejemplo, el AMP se puede denominar también como ácido adenílico, o, dado que a pH 7 se encuentra normalmente disociado, como adenilato; este sistema de nomenclatura resulta un tanto ambiguo ya que no especifica el número de grupos fosfato. También es habitual nombrar a los nucleótidos como fosfatos de los correspondientes nucleósidos; por ejemplo, el ATP es el trifosfato de adenosina o adenosín-trifosfato.

    ÁCIDOS NUCLEICOS. 


    •  Un organismo vivo contiene un conjunto de instrucciones para formar una replicadesimismo.
    •  El genoma del organismo o material genético es donde esta toda esa información.
    • Los genomas de todas las células están formadas por ADN. Algunos genomas viralesestánformadosporARN.
    • Enmuchasbacterias,elgenomapuedeconsistirenunasolomoléculadeADN.
    • La información que especifica la estructura primaria de una proteína esta codificadaenlasecuenciadenucleótidosenelADN.
    • Los ácidos nucleicos representan la cuarta gran clase de macromoléculas. Estas al igual que las proteínas y los polisacáridos, contienen múltiples unidades manométricas similares que se unen en forma covalente para producirpolímerosgrandes.

    Los ácidos nucleicos son polímeros de nucleótidos. En ellos la unión entre las sucesivas unidades nucleotídicas se realiza mediante enlaces tipo éster-fosfato que resultan de la reacción entre el ácido fosfórico unido al carbono 5' de la pentosa de un nucleótido y el hidroxilo del carbono 3' de la pentosa de otro nucleótido. Este tipo de unión, en la que un grupo fosfato queda unido por dos enlaces éster a dos nucleótidos sucesivos, se conoce también como puente fosfodiéster (Figura 9.6). Cuando dos nucleótidos se unen mediante un puente fosfodiéster el dinucleótido que resulta conserva un grupo 5' fosfato libre en un extremo que puede reaccionar con el grupo hidroxilo 3' de otro nucleótido, y un grupo hidroxilo 3' libre que puede reaccionar con el grupo 5' fosfato de otro nucleótido. Esta circunstancia permite que mediante puentes fosfodiéster se puedan enlazar un número elevado de nucleótidos para formar largas cadenas lineales que siempre tendrán en un extremo un grupo 5' fosfato libre y en el otro un grupo hidroxilo 3' libre. De manera análoga a lo establecido para otros tipos de biomoléculas, el compuesto formado por una cadena de hasta 10 nucleótidos se denomina oligonucleótido, mientras que si el número de unidades nucleotídicas es superior a 10 se dice que es un polinucleótido. En la mayor parte de los casos, las cadenas polinucleotídicas de los ácido nucleicos contienen varios miles de estas unidades monoméricas unidas por puentes fosfodiéster.. Del mismo modo que se definió la estructura primaria de las proteínas como su secuencia de aminoácidos, se puede definir la estructura primaria de los ácidos nucleicos como su secuencia de nucleótidos. La analogía entre ácidos nucleicos y proteínas todavía se puede llevar más allá: al igual que las cadenas polipeptídicas poseen un esqueleto monótono a partir del cual se proyectan lateralmente los grupos R de los distintos aminoácidos, los ácidos nucleicos poseen un esqueleto de las mismas características, formado por una sucesión alterna de pentosas y grupos fosfato, a partir del cual se proyectan 7 lateralmente las distintas bases nitrogenadas. Existen dos tipos principales de ácidos nucleicos: el ácido ribonucleico (RNA), que es un polímero de ribonucleótidos, y el ácido desoxirribonucleico (DNA), que es un polímero de desoxirribonucleótidos. Las diferencias en cuanto a composición entre estos dos tipos de ácido nucleico vienen dadas por las que existen entre sus nucleótidos constituyentes y residen en el tipo de pentosa y bases nitrogenadas características de uno y otro (Tabla 9.2). Los dos tipos de ácidos nucleicos están presentes simultáneamente en todas las células vivas. En los virus, parásitos intracelulares obligados, aparecen de manera excluyente DNA o RNA. Los ácidos nucleicos son moléculas portadoras de información. La secuencia ordenada de sus nucleótidos junto con las estructuras características de las cadenas polinucleotídicas proporcionan las bases físico-químicas para que estas macromoléculas puedan almacenar y transmitir la información genética en el proceso de reproducción de los seres vivos, lo que constituye su función biológica primordial. Tanto la estructura como la función de los ácidos nucleicos se comprenderán mejor cuando se hayan adquirido nuevos conocimientos acerca de la biología de la célula y de los mecanismos de la herencia biológica, por lo que su estudio se pospondrá para otra parte del programa de esta asignatura.




    ADN

    El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene las instrucciones genéticasusadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo deinformación. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas deARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.
    Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado porvagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (ladesoxirribosa), una base nitrogenada (que puede ser adeninaAtiminaTcitosinaC o guaninaG) y un grupofosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando solo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.

    Estructura

    El ADN es una molécula bicatenaria, es decir, está formada por dos cadenas dispuestas de forma antiparalela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se distinguen distintos niveles:34 35
    1. Estructura primaria:
      • Secuencia de nucleótidos encadenados. Es en estas cadenas donde se encuentra la información genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta secuencia de bases nitrogenadas. Esta secuencia presenta un código, que determina una información u otra, según el orden de las bases.
    2. Estructura secundaria:
      • Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en la difracción de rayos X que habían realizado Franklin y Wilkins, y en la equivalencia de bases de Chargaff, según la cual la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
      • Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina y la guanina de una cadena se unen, respectivamente, a la timina y la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´ de una se enfrenta al extremo 5' de la homóloga.
      • Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el que tiene la estructura descrita por Watson y Crick.
    3. Estructura terciaria:
      • Se refiere a cómo se almacena el ADN en un espacio reducido, para formar los cromosomas. Varía según se trate de organismos procariotas o eucariotas:
      1. En procariotas el ADN se pliega como una súper-hélice, generalmente en forma circular y asociada a una pequeña cantidad de proteínas. Lo mismo ocurre enorgánulos celulares como las mitocondrias y en los cloroplastos.
      2. En eucariotas, dado que la cantidad de ADN de cada cromosoma es muy grande, el empaquetamiento ha de ser más complejo y compacto; para ello se necesita la presencia de proteínas, como las histonas y otras proteínas de naturaleza no histónica (en los espermatozoides estas proteínas son las protaminas).34
    4. Estructura cuaternaria:
    • La cromatina presente en el núcleo tiene un grosor de 300 Å, pues la fibra de cromatina de 100 Å se enrolla formando una fibra de cromatina de 300 Å. El enrollamiento de los nucleosomas recibe el nombre de solenoide. Dichos solenoides se enrollan formando la cromatina del núcleo interfásico de la célula eucariota. Cuando la célula entra en división, el ADN se compacta más, formando así los .cromosomas.


    MEDICAMENTOS RELACIONADOS

    es un profármaco, emparentado con la 6 mercaptopurina. Ambas se suelen denominar conjuntamente tiopurinas, y se usan como agentes inmunosupresores, en la actualidad preferentemente en el tratamiento de enfermedades en las que el sistema inmune está activado de manera equivocada, por lo que es necesario modularlo.
    , es un fármaco que se utiliza para el tratamiento de las infecciones por el virus de la inmunodeficiencia humana, agente causante del sida.
    s un fármaco antiviral que se usa en el tratamiento de las infecciones producidas por la varicela, el virus herpes humano (VHH), entre las que se el herpes bucal, el herpes zóster y la mononucleosis infecciosa.